HikoGUI
A low latency retained GUI
Loading...
Searching...
No Matches
bezier.hpp
1// Copyright Take Vos 2019-2021.
2// Distributed under the Boost Software License, Version 1.0.
3// (See accompanying file LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
4
5#pragma once
6
7#include "polynomial.hpp"
8#include "numeric_array.hpp"
9#include "geometry/point.hpp"
10#include <array>
11#include <optional>
12
13namespace tt {
14
15// B(t)=(P_{2}-P_{1})t+P_{1}
16template<typename T>
17constexpr std::array<T, 2> bezierToPolynomial(T P1, T P2) noexcept
18{
19 return {P2 - P1, P1};
20}
21
22// B(t)=(P_{1}-2C+P_{2})t^{2}+2(C-P_{1})t+P_{1}
23template<typename T>
24constexpr std::array<T, 3> bezierToPolynomial(T P1, T C, T P2) noexcept
25{
26 return {P1 - C * 2 + P2, (C - P1) * 2, P1};
27}
28
29// B(t)=(-P_{1}+3C_{1}-3C_{2}+P_{2})t^{3}+(3P_{1}-6_{1}+3C_{2})t^{2}+(-3P_{1}+3C_{1})t+P_{1}
30template<typename T>
31constexpr std::array<T, 4> bezierToPolynomial(T P1, T C1, T C2, T P2) noexcept
32{
33 return {-P1 + C1 * 3 - C2 * 3 + P2, P1 * 3 - C1 * 6 + C2 * 3, P1 * -3 + C1 * 3, P1};
34}
35
36template<int D>
37constexpr geo::point<D> bezierPointAt(geo::point<D> P1, geo::point<D> P2, float t) noexcept
38{
39 ttlet[a, b] = bezierToPolynomial(static_cast<f32x4>(P1), static_cast<f32x4>(P2));
40 return geo::point<D>{a * t + b};
41}
42
43template<int D>
44constexpr geo::point<D> bezierPointAt(geo::point<D> P1, geo::point<D> C, geo::point<D> P2, float t) noexcept
45{
46 ttlet[a, b, c] = bezierToPolynomial(static_cast<f32x4>(P1), static_cast<f32x4>(C), static_cast<f32x4>(P2));
47 return geo::point<D>{a * t * t + b * t + c};
48}
49
50template<int D>
51constexpr geo::point<D> bezierPointAt(geo::point<D> P1, geo::point<D> C1, geo::point<D> C2, geo::point<D> P2, float t) noexcept
52{
53 ttlet[a, b, c, d] =
54 bezierToPolynomial(static_cast<f32x4>(P1), static_cast<f32x4>(C1), static_cast<f32x4>(C2), static_cast<f32x4>(P2));
55 return geo::point<D>{a * t * t * t + b * t * t + c * t + d};
56}
57
58template<int D>
59inline geo::vector<D> bezierTangentAt(geo::point<D> P1, geo::point<D> P2, float t) noexcept
60{
61 return P2 - P1;
62}
63
64template<int D>
65inline geo::vector<D> bezierTangentAt(geo::point<D> P1, geo::point<D> C, geo::point<D> P2, float t) noexcept
66{
67 ttlet P1_ = static_cast<f32x4>(P1);
68 ttlet C_ = static_cast<f32x4>(C);
69 ttlet P2_ = static_cast<f32x4>(P2);
70
71 return geo::vector<D>{2 * t * (P2_ - 2 * C_ + P1_) + 2 * (C_ - P1_)};
72}
73
74template<int D>
75inline geo::vector<D> bezierTangentAt(geo::point<D> P1, geo::point<D> C1, geo::point<D> C2, geo::point<D> P2, float t) noexcept
76{
77 ttlet P1_ = static_cast<f32x4>(P1);
78 ttlet C1_ = static_cast<f32x4>(C1);
79 ttlet C2_ = static_cast<f32x4>(C2);
80 ttlet P2_ = static_cast<f32x4>(P2);
81
82 return geo::vector<D>{3 * t * t * (P2_ - 3 * C2_ + 3 * C1_ - P1_) + 6 * t * (C2_ - 2 * C1_ + P1_) + 3 * (C1_ - P1_)};
83}
84
85inline results<float, 1> bezierFindT(float P1, float P2, float x) noexcept
86{
87 ttlet[a, b] = bezierToPolynomial(P1, P2);
88 return solvePolynomial(a, b - x);
89}
90
91inline results<float, 2> bezierFindT(float P1, float C, float P2, float x) noexcept
92{
93 ttlet[a, b, c] = bezierToPolynomial(P1, C, P2);
94 return solvePolynomial(a, b, c - x);
95}
96
97inline results<float, 3> bezierFindT(float P1, float C1, float C2, float P2, float x) noexcept
98{
99 ttlet[a, b, c, d] = bezierToPolynomial(P1, C1, C2, P2);
100 return solvePolynomial(a, b, c, d - x);
101}
102
107inline results<float, 1> bezierFindTForNormalsIntersectingPoint(point2 P1, point2 P2, point2 P) noexcept
108{
109 auto t_above = dot(P - P1, P2 - P1);
110 auto t_below = dot(P2 - P1, P2 - P1);
111 if (t_below == 0.0) {
112 [[unlikely]] return {};
113 } else {
114 return {t_above / t_below};
115 }
116}
117
122inline results<float, 3> bezierFindTForNormalsIntersectingPoint(point2 P1, point2 C, point2 P2, point2 P) noexcept
123{
124 ttlet P1_ = static_cast<f32x4>(P1);
125 ttlet P2_ = static_cast<f32x4>(P2);
126 ttlet C_ = static_cast<f32x4>(C);
127
128 ttlet p = P - P1;
129 ttlet p1 = C - P1;
130 ttlet p2 = vector2{P2_ - (2 * C_) + P1_};
131
132 ttlet a = dot(p2, p2);
133 ttlet b = 3 * dot(p1, p2);
134 ttlet c = dot(2 * p1, p1) - dot(p2, p);
135 ttlet d = -dot(p1, p);
136 return solvePolynomial(a, b, c, d);
137}
138
146inline results<float, 1> bezierFindX(point2 P1, point2 P2, float y) noexcept
147{
148 if (y < std::min({P1.y(), P2.y()}) || y > std::max({P1.y(), P2.y()})) {
149 return {};
150 }
151
152 results<float, 1> r;
153 for (ttlet t : bezierFindT(P1.y(), P2.y(), y)) {
154 if (t >= 0.0f && t < 1.0f) {
155 r.add(bezierPointAt(P1, P2, t).x());
156 }
157 }
158
159 return r;
160}
161
169inline results<float, 2> bezierFindX(point2 P1, point2 C, point2 P2, float y) noexcept
170{
171 results<float, 2> r{};
172
173 if (y < std::min({P1.y(), C.y(), P2.y()}) || y > std::max({P1.y(), C.y(), P2.y()})) {
174 return r;
175 }
176
177 for (ttlet t : bezierFindT(P1.y(), C.y(), P2.y(), y)) {
178 if (t >= 0.0f && t <= 1.0f) {
179 r.add(bezierPointAt(P1, C, P2, t).x());
180 }
181 }
182
183 return r;
184}
185
193inline results<float, 3> bezierFindX(point2 P1, point2 C1, point2 C2, point2 P2, float y) noexcept
194{
195 results<float, 3> r{};
196
197 if (y < std::min({P1.y(), C1.y(), C2.y(), P2.y()}) || y > std::max({P1.y(), C1.y(), C2.y(), P2.y()})) {
198 return r;
199 }
200
201 for (ttlet t : bezierFindT(P1.y(), C1.y(), C2.y(), P2.y(), y)) {
202 if (t >= 0.0f && t <= 1.0f) {
203 r.add(bezierPointAt(P1, C1, C2, P2, t).x());
204 }
205 }
206
207 return r;
208}
209
213inline float bezierFlatness(point2 P1, point2 P2) noexcept
214{
215 return 1.0f;
216}
217
222inline float bezierFlatness(point2 P1, point2 C, point2 P2) noexcept
223{
224 ttlet P1P2 = hypot(P2 - P1);
225 if (P1P2 == 0.0f) {
226 return 1.0;
227 }
228
229 ttlet P1C1 = hypot(C - P1);
230 ttlet C1P2 = hypot(P2 - C);
231 return P1P2 / (P1C1 + C1P2);
232}
233
238inline float bezierFlatness(point2 P1, point2 C1, point2 C2, point2 P2) noexcept
239{
240 ttlet P1P2 = hypot(P2 - P1);
241 if (P1P2 == 0.0f) {
242 return 1.0;
243 }
244
245 ttlet P1C1 = hypot(C1 - P1);
246 ttlet C1C2 = hypot(C2 - C1);
247 ttlet C2P2 = hypot(P2 - C2);
248 return P1P2 / (P1C1 + C1C2 + C2P2);
249}
250
251inline std::pair<point2, point2> parrallelLine(point2 P1, point2 P2, float distance) noexcept
252{
253 ttlet v = P2 - P1;
254 ttlet n = normal(v);
255 return {P1 + n * distance, P2 + n * distance};
256}
257
260inline std::optional<point2> getIntersectionPoint(point2 A1, point2 A2, point2 B1, point2 B2) noexcept
261{
262 // convert points to vectors.
263 ttlet p = A1;
264 ttlet r = A2 - A1;
265 ttlet q = B1;
266 ttlet s = B2 - B1;
267
268 // find t and u in:
269 // p + t*r == q + us
270 ttlet crossRS = cross(r, s);
271 if (crossRS == 0.0f) {
272 // Parallel, other non, or a range of points intersect.
273 return {};
274
275 } else {
276 ttlet q_min_p = q - p;
277 ttlet t = cross(q_min_p, s) / crossRS;
278 ttlet u = cross(q_min_p, r) / crossRS;
279
280 if (t >= 0.0f && t <= 1.0f && u >= 0.0f && u <= 1.0f) {
281 return bezierPointAt(A1, A2, t);
282 } else {
283 // The lines intersect outside of one or both of the segments.
284 return {};
285 }
286 }
287}
288
291inline std::optional<point2> getExtrapolatedIntersectionPoint(point2 A1, point2 A2, point2 B1, point2 B2) noexcept
292{
293 // convert points to vectors.
294 ttlet p = A1;
295 ttlet r = A2 - A1;
296 ttlet q = B1;
297 ttlet s = B2 - B1;
298
299 // find t and u in:
300 // p + t*r == q + us
301 ttlet crossRS = cross(r, s);
302 if (crossRS == 0.0f) {
303 // Parallel, other non, or a range of points intersect.
304 return {};
305
306 } else {
307 ttlet q_min_p = q - p;
308 ttlet t = cross(q_min_p, s) / crossRS;
309
310 return bezierPointAt(A1, A2, t);
311 }
312}
313
314} // namespace tt
T distance(T... args)
T hypot(T... args)
T max(T... args)
T min(T... args)